4.7 Article

Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 420, Issue 3, Pages 2034-2041

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2966.2011.20144.x

Keywords

galaxies: dwarf; galaxies: kinematics and dynamics; Local Group; dark matter

Funding

  1. Royal Society University
  2. NASA [HST-HF-51283.01-A, NAS5-26555]
  3. Space Telescope Science Institute
  4. German Research Foundation (DFG) [Sonderforschungsbereich SFB 881]
  5. Deutsche Forschungsgemeinschaft [Ko 4161/1]
  6. STFC [ST/H002235/1, ST/H00856X/1, ST/J001538/1, PP/E00119X/1] Funding Source: UKRI
  7. Science and Technology Facilities Council [ST/H00856X/1, ST/J001538/1, PP/E00119X/1, ST/H00243X/1, ST/H002235/1] Funding Source: researchfish

Ask authors/readers for more resources

Kinematic surveys of the dwarf spheroidal (dSph) satellites of the Milky Way are revealing tantalizing hints about the structure of dark matter (DM) haloes at the low-mass end of the galaxy luminosity function. At the bright end, modelling of spiral galaxies has shown that their rotation curves are consistent with the hypothesis of a universal rotation curve whose shape is supported by a cored dark matter halo. In this paper, we investigate whether the internal kinematics of the Milky Way dSphs are consistent with the particular cored DM distributions which reproduce the properties of spiral galaxies. Although the DM densities in dSphs are typically almost two orders of magnitude higher than those found in (larger) disc systems, we find consistency between dSph kinematics and Burkert DM haloes whose core radii r0 and central densities ?0 lie on the extrapolation of the scaling law seen in spiral galaxies: log ?0?a log r0+ const with 0.9 < a < 1.1. We similarly find that the dSph data are consistent with the relation between ?0 and baryon scalelength seen in spiral galaxies. While the origin of these scaling relations is unclear, the finding that a single DM halo profile is consistent with kinematic data in galaxies of widely varying size, luminosity and Hubble type is important for our understanding of observed galaxies and must be accounted for in models of galaxy formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available