4.7 Article

The influence of superstructures on bright galaxy environments: clustering properties

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 426, Issue 1, Pages 708-718

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2012.21742.x

Keywords

methods: data analysis; methods: statistical; large-scale structure of Universe

Funding

  1. Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)
  2. Secretaria de Ciencia y Tecnologia, Universidad Nacional de Cordoba, Argentina
  3. Fondecyt [1110328]
  4. Alfred P. Sloan Foundation
  5. National Science Foundation
  6. U.S. Department of Energy
  7. National Aeronautics and Space Administration
  8. Japanese Monbukagakusho
  9. Max Planck Society
  10. Higher Education Funding Council for England
  11. American Museum of Natural History
  12. Astrophysical Institute Potsdam
  13. University of Basel
  14. University of Cambridge
  15. Case Western Reserve University
  16. University of Chicago
  17. Drexel University
  18. Fermilab
  19. Institute for Advanced Study
  20. Japan Participation Group
  21. Johns Hopkins University
  22. Joint Institute for Nuclear Astrophysics
  23. Kavli Institute for Particle Astrophysics and Cosmology
  24. Korean Scientist Group
  25. Chinese Academy of Sciences (LAMOST)
  26. Los Alamos National Laboratory
  27. Max-Planck-Institute for Astronomy (MPIA)
  28. Max-Planck-Institute for Astrophysics (MPA)
  29. New Mexico State University
  30. Ohio State University
  31. University of Pittsburgh
  32. University of Portsmouth
  33. Princeton University
  34. United States Naval Observatory
  35. University of Washington

Ask authors/readers for more resources

We analyse the dependence of clustering properties of galaxies as a function of their large-scale environment. In order to characterize the environment on large scales, we use the catalogue of future virialized superstructures (FVS) by Luparello et al. and separate samples of luminous galaxies according to whether or not they belong to FVS. In order to avoid biases in the selection of galaxies, we have constructed different subsamples so that the distributions of luminosities and masses are comparable outside and within FVS. As expected, at large scales, there is a strong difference between the clustering of galaxies inside and outside FVS. However, this behaviour changes at scales r = 1?h-1 Mpc, where the correlations have similar amplitudes. The amplitude of the two-halo term of the correlation function for objects inside FVS does not depend on their mass, but rather on that of the FVS. This is confirmed by comparing this amplitude with that expected from extended PressSchechter fits. In order to compare these observational results with current models for structure formation, we have performed a similar analysis using a semi-analytic implementation in a ?cold dark matter (?CDM) cosmological model. We find that the cross-correlation functions from the mock catalogue depend on the large-scale structures in a similar way to the observations. From our analysis, we conclude that the clustering of galaxies within the typical virialized regions of groups mainly depends on the halo mass, irrespective of the large-scale environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available