4.7 Article

The globular cluster kinematics and galaxy dark matter content of NGC 3923

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 421, Issue 2, Pages 1485-1498

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2966.2012.20417.x

Keywords

globular clusters: general; galaxies: general; galaxies: individual: NGC 3923; galaxies: kinematics and dynamics

Funding

  1. STFC
  2. NASA through Space Telescope Science Institute [HST-AR-12147.01-A]
  3. NASA [NAS5-26555]
  4. NSF [AST-0406891, 0908639]
  5. ARC
  6. Agencia de Promocion Cientifica y Tecnologica [BID AR PICT 885]
  7. National Science Foundation (United States)
  8. Science and Technology Facilities Council (United Kingdom)
  9. National Research Council (Canada)
  10. CONICYT (Chile)
  11. Australian Research Council (Australia)
  12. Ministrio da Cincia, Tecnologia e Inovao (Brazil)
  13. Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina)
  14. Science and Technology Facilities Council [ST/I001573/1] Funding Source: researchfish
  15. STFC [ST/I001573/1] Funding Source: UKRI
  16. Direct For Mathematical & Physical Scien
  17. Division Of Astronomical Sciences [0908639] Funding Source: National Science Foundation

Ask authors/readers for more resources

This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South Telescope, an additional 50 GC and ultra-compact dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 R-e similar to 30 kpc) from the centre of NGC 3923 and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within similar to 130 arcsec. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/L-V = 8 to 26) at large galactocentric radii is required to explain this observation. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5(-4.5)(+7.3) per cent of the mass within 1 R-e, 41.2(-10.6)(+18.2) per cent within 2 R-e and 75.6(-16.8)(+15.4) per cent within the radius of our last kinematic tracer at 6.9 R-e. The total dynamical mass within this radius is found to be 1.5(-0.25)(+0.4) x 10(12) M-circle dot. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available