4.7 Article

The impact of feedback from galaxy formation on the Lyman α transmitted flux

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 429, Issue 2, Pages 1734-1746

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sts465

Keywords

methods: numerical; galaxies: formation; intergalactic medium; quasars: absorption lines; cosmology: theory

Funding

  1. National Computing Facilities Foundation (NCF)
  2. Netherlands Organization for Scientific Research (NWO)
  3. VIDI grant
  4. Marie Curie Initial Training Network CosmoComp [N-GA-2009-238356]
  5. ASI/AAE
  6. INFN/PD51
  7. PRIN-INAF
  8. PRIN-MIUR
  9. ERC-StG
  10. European Research Council under the European Union's Seventh Framework Programme [278594-GasAroundGalaxies, 257670-cosmoIGM]
  11. Science and Technology Facilities Council [ST/J005673/1, ST/H008586/1, ST/K00333X/1] Funding Source: researchfish
  12. STFC [ST/J005673/1, ST/K00333X/1, ST/H008586/1] Funding Source: UKRI

Ask authors/readers for more resources

The forest of Lyman alpha absorption lines seen in the spectra of distant quasars has become an important probe of the distribution of matter in the Universe. We use large, hydrodynamical simulations from the Over Whelmingly Large Simulations project project to investigate the effect of feedback from galaxy formation on the probability distribution function and the power spectrum of the Lyman alpha transmitted flux. While metal-line cooling is unimportant, both galactic outflows from massive galaxies driven by active galactic nuclei and winds from low-mass galaxies driven by supernovae have a substantial impact on the flux statistics. At redshift z = 2.25, the effects on the flux statistics are of a similar magnitude as the statistical uncertainties of published data sets. The changes in the flux statistics are not due to differences in the temperature-density relation of the photoionized gas. Instead, they are caused by changes in the density distribution and in the fraction of hot, collisionally ionized gas. It may be possible to disentangle astrophysical and cosmological effects by taking advantage of the fact that they induce different redshift dependencies. In particular, the magnitude of the feedback effects appears to decrease rapidly with increasing redshift. Analyses of Lyman alpha forest data from surveys that are currently in process, such as Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey-III (BOSS/SDSS-III) and X-Shooter/Very Large Telescope (VLT), must take galactic winds into account.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available