4.7 Article

Investigating emission-line galaxy surveys with the Sloan Digital Sky Survey infrastructure

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 428, Issue 2, Pages 1498-1517

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sts127

Keywords

cosmology: observations; large-scale structure of Universe; galaxies: abundances

Funding

  1. Alfred P. Sloan Foundation
  2. National Science Foundation
  3. US Department of Energy Office of Science
  4. University of Arizona
  5. Brazilian Participation Group
  6. Brookhaven National Laboratory
  7. University of Cambridge
  8. Carnegie Mellon University
  9. University of Florida
  10. French Participation Group
  11. German Participation Group
  12. Harvard University
  13. Instituto de Astrofisica de Canarias
  14. Michigan State/Notre Dame/JINA Participation Group
  15. Johns Hopkins University
  16. Lawrence Berkeley National Laboratory
  17. Max Planck Institute for Astrophysics
  18. Max Planck Institute for Extraterrestrial Physics
  19. New Mexico State University
  20. New York University
  21. Ohio State University
  22. Pennsylvania State University
  23. University of Portsmouth
  24. Princeton University
  25. Spanish Participation Group
  26. University of Tokyo
  27. University of Utah
  28. Vanderbilt University
  29. University of Virginia
  30. University of Washington
  31. Yale University
  32. Agence Nationale de la Recherche [ANR-08-BLAN-0222]
  33. Agence Nationale de la Recherche (ANR) [ANR-08-BLAN-0222] Funding Source: Agence Nationale de la Recherche (ANR)
  34. STFC [ST/I505905/1, ST/I001204/1] Funding Source: UKRI
  35. Science and Technology Facilities Council [ST/I001204/1, ST/I505905/1] Funding Source: researchfish

Ask authors/readers for more resources

The baryon acoustic oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to probe the accelerated expansion of the Universe. The current surveys covering a comoving volume sufficient to unveil the BAO scale are limited to redshift z less than or similar to 0.7. In this paper, we study several galaxy selection schemes aiming at building an emission-line galaxy (ELG) sample in the redshift range 0.6 < z < 1.7 that would be suitable for future BAO studies using the Baryonic Oscillation Spectroscopic Survey (BOSS) spectrograph on the Sloan Digital Sky Survey (SDSS) telescope. We explore two different colour selections using both the SDSS and the Canada-France-Hawaii Telescope Legacy Survey (CFHT-LS) photometry in the u, g, r and i bands and evaluate their performance selecting luminous ELGs. From about 2000 ELGs, we identified a selection scheme that has a 75 per cent redshift measurement efficiency. This result confirms the feasibility of massive ELG surveys using the BOSS spectrograph on the SDSS telescope for a BAO detection at z similar to 1, in particular the proposed eBOSS experiment, which plans to use the SDSS telescope to combine the use of the BAO ruler with redshift space distortions using ELGs and quasars in the redshift range 0.6 < z < 2.2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available