4.7 Article

The effects of baryonic cooling on the concentration-mass relation

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 424, Issue 2, Pages 1244-1260

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2012.21302.x

Keywords

galaxies: clusters: general; cosmology: theory; dark matter

Ask authors/readers for more resources

I re-examine the relation between virial mass and concentration for groups and clusters of galaxies as measured in a number of recent works. As previously noted by several authors, low-mass clusters and groups of galaxies display systematically larger concentrations than simple prescriptions based on pure N-body simulations would predict. This implies an observed concentrationmass relation with a substantially larger slope/normalization than expected from theoretical investigations. Additionally, this conclusion seems to be quite independent of selection effects, holding for both lensing based and X-ray based cluster samples. In order to shed new light on this issue I employ a simple spherical halo model containing, in addition to dark matter, also stars and hot diffuse gas in proportions and with distributions in agreement with the most recent observations. Moreover, I include the contraction effect experienced by dark matter due to the cooling of baryons in the very central part of the structure itself. The resulting modified concentrationmass relation is steeper than the theoretical input one, because star formation is fractionally more efficient in low-mass objects. However, the effect is non-vanishing at all masses, thus resulting also in a larger normalization. Overall the new relation provides a better representation of the observed one for almost all catalogues considered in this work, although the specific details depend quite significantly on the baryon fraction prescription adopted. Specifically, the observed concentrationmass relation seems to favour a scenario where the stellar mass fraction in large clusters of galaxies is substantially lower than several works have found. Anyhow, the same effect could also be produced by a redistribution of baryons within the structure. Moreover, the concentration of a number of high-mass objects seems to be significantly lower even than the predictions based on pure N-body simulations, and they are hence unaccounted for in the modified scenario that is proposed here. Finally I use this simple model to show how the estimated concentration of cosmic structures is expected to be overestimated as a function of the radial range covered by the analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available