4.7 Article

Slowing down atomic diffusion in subdwarf B stars: mass loss or turbulence?

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 418, Issue 1, Pages 195-205

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2011.19482.x

Keywords

asteroseismology; diffusion; methods: numerical; stars: chemically peculiar; stars: evolution; stars: mass-loss

Funding

  1. Netherlands Organisation for Scientific Research (NWO)
  2. STFC [ST/G00269X/1] Funding Source: UKRI
  3. Science and Technology Facilities Council [ST/G00269X/1, ST/H00243X/1] Funding Source: researchfish

Ask authors/readers for more resources

Subdwarf B (sdB) stars show chemical peculiarities that cannot be explained by diffusion theory alone. Both mass loss and turbulence have been invoked to slow down atomic diffusion in order to match observed abundances. The fact that some sdB stars show pulsations give upper limits on the amount of mass loss and turbulent mixing allowed. Consequently, non-adiabatic asteroseismology has the potential to decide which process is responsible for the abundance anomalies. We compute for the first time seismic properties of sdB models with atomic diffusion included consistently during the stellar evolution. The diffusion equations with radiative forces are solved for H, He, C, N, O, Ne, Mg, Fe and Ni. We examine the effects of various mass-loss rates and mixed surface masses on the abundances and mode stability. It is shown that the mass-loss rates needed to simulate the observed He abundances () are not consistent with observed pulsations. We find that for pulsations to be driven the rates should be . On the other hand, weak turbulent mixing of the outer 10-6 M? can explain the He abundance anomalies while still allowing pulsations to be driven. The origin of the turbulence remains unknown but the presence of pulsations gives tight constraints on the underlying turbulence model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available