4.7 Article

Swimming against the current: simulations of central AGN evolution in dynamic galaxy clusters

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 407, Issue 2, Pages 1277-1289

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2010.17059.x

Keywords

galaxies: active; galaxies: clusters: general; intergalactic medium; galaxies: jets

Funding

  1. NSF [0707682]
  2. DFG [BR 2026/3]
  3. NASA [TM8-9011X]
  4. DOE
  5. Division Of Astronomical Sciences
  6. Direct For Mathematical & Physical Scien [0707682] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a series of three-dimensional hydrodynamical simulations of central active galactic nuclei (AGN)-driven jets in a dynamic, cosmologically evolved galaxy cluster. Extending previous work, we study jet powers ranging from L-jet = 1044 erg s-1 to L-jet = 1046 erg s-1 and in duration from 30 to 200 Myr. We find that large-scale motions of cluster gas disrupt the AGN jets, causing energy to be distributed throughout the centre of the cluster, rather than confined to a narrow angle around the jet axis. Disruption of the jet also leads to the appearance of multiple disconnected X-ray bubbles from a long-duration AGN with a constant luminosity. This implies that observations of multiple bubbles in a cluster are not necessarily an expression of the AGN duty cycle. We find that the 'sphere of influence' of the AGN, the radial scale within which the cluster is strongly affected by the jet, scales as R proportional to L1/3(jet). Increasing the duration of AGN activity does not increase the radius affected by the AGN significantly, but does change the magnitude of the AGN's effects. How an AGN delivers energy to a cluster will determine where that energy is deposited: a high luminosity is needed to heat material outside the core of the cluster, while a low-luminosity, long-duration AGN is more efficient at heating the inner few tens of kpc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available