4.7 Review

A submillimetre survey of the kinematics of the Perseus molecular cloud - II. Molecular outflows

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 408, Issue 3, Pages 1516-1539

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2966.2010.17214.x

Keywords

stars: formation; stars: mass-loss; ISM: individual objects: Perseus; ISM: jets and outflows; submillimetre: ISM

Funding

  1. STFC
  2. NSF
  3. Canadian Space Agency
  4. STFC [ST/G002916/1] Funding Source: UKRI
  5. Science and Technology Facilities Council [ST/G002916/1] Funding Source: researchfish

Ask authors/readers for more resources

We present a census of molecular outflows across four active regions of star formation in the Perseus molecular cloud (NGC 1333, IC348/HH211, L1448 and L1455), totalling an area of over 1000 arcmin2. This is one of the largest surveys of outflow evolution in a single molecular cloud published to date. We analyse large-scale, sensitive CO J = 3 -> 2 data sets from the James Clerk Maxwell Telescope, including new data towards NGC 1333. Where possible we make use of our complementary 13CO and C18O data to correct for the 12CO optical depth and measure ambient cloud properties. Of the 65 submillimetre cores in our fields, we detect outflows towards 45. 24 of these are marginal detections where the outflow's shape is unclear or could be confused with the other outflows. We compare various parameters between the outflows from Class 0 and I protostars, including their mass, momentum, energy and momentum flux. Class 0 outflows are longer, faster, more massive and have more energy than Class I outflows. The dynamical time-scales we derive from these outflows are uncorrelated to the age of the outflow driving source, computed from the protostar's bolometric temperature. We confirm the results of Bontemps et al. that outflows decrease in force as they age. There is a decrease in momentum flux from the Class 0 to I stage: << F(CO)>> = (0.8 +/- 0.3) x 10-4 compared to (1.1 +/- 0.3) x 10-5 M(circle dot) km s-1 yr-1, suggesting a decline in the mass accretion rate assuming the same entrainment fraction for both classes of outflow. If F(rad) = L(bol)/c is the flux expected in radiation from the central source, then F(CO)(Class I) similar to 100F(rad) and F(CO)(Class 0) similar to 1000F(rad). Furthermore, we confirm there are additional sources of mass loss from protostars. If a core's mass is only lost from outflows at the current rate, cores would endure a few million years, much longer than current estimates for the duration of the protostellar stage. Finally, we note that the total energy contained in outflows in NGC 1333, L1448 and L1455 is greater than the estimated turbulent energy in the respective regions, which may have implications for the regions' evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available