4.7 Article

Timing the starburst-AGN connection

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 405, Issue 2, Pages 933-947

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2010.16536.x

Keywords

galaxies: active; galaxies: bulges; galaxies: starburst

Funding

  1. Marie Curie Intra-European fellowship
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. US Department of Energy
  5. National Aeronautics and Space Administration
  6. Japanese Monbukagakusho
  7. Max Planck Society
  8. Higher Education Funding Council for England
  9. American Museum of Natural History
  10. Astrophysical Institute Potsdam
  11. University of Basel
  12. University of Cambridge
  13. Case Western Reserve University
  14. University of Chicago
  15. Drexel University
  16. Fermilab
  17. Institute for Advanced Study
  18. Japan Participation Group
  19. Johns Hopkins University
  20. Joint Institute for Nuclear Astrophysics
  21. Kavli Institute for Particle Astrophysics and Cosmology
  22. Korean Scientist Group
  23. Chinese Academy of Sciences (LAMOST)
  24. Los Alamos National Laboratory
  25. Max-Planck-Institute for Astronomy (MPIA)
  26. Max-Planck-Institute for Astrophysics (MPA)
  27. New Mexico State University
  28. Ohio State University
  29. University of Pittsburgh
  30. University of Portsmouth
  31. Princeton University
  32. United States Naval Observatory
  33. University of Washington

Ask authors/readers for more resources

The mass of supermassive black holes at the centre of galaxies is tightly correlated with the mass of the galaxy bulges which host them. This observed correlation implies a mechanism of joint growth, but the precise physical processes responsible are a matter of some debate. Here, we report on the growth of black holes in 400 local galactic bulges which have experienced a strong burst of star formation in the past 600 Myr. The black holes in our sample have typical masses of 106.5-107.5 M-circle dot and the active nuclei have bolometric luminosities of the order of 1042-1044 erg s-1. We combine stellar continuum indices with H alpha luminosities to measure a decay time-scale of similar to 300 Myr for the decline in star formation after a starburst. During the first 600 Myr after a starburst, the black holes in our sample increase their mass by on-average 5 per cent and the total mass of stars formed is about 103 times the total mass accreted on to the black hole. This ratio is similar to the ratio of stellar to black hole mass observed in present-day bulges. We find that the average rate of accretion of matter on to the black hole rises steeply roughly 250 Myr after the onset of the starburst. We show that our results are consistent with a simple model in which 0.5 per cent of the mass lost by intermediate-mass stars in the bulge is accreted by the black hole, but with a suppression in the efficiency of black hole growth at early times plausibly caused by supernova feedback, which is stronger at earlier times. We suggest this picture may be more generally applicable to black hole growth, and could help explain the strong correlation between bulge and black hole mass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available