4.7 Article

The shape of an accretion disc in a misaligned black hole binary

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 400, Issue 1, Pages 383-391

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2009.15465.x

Keywords

accretion; accretion discs; X-rays: binaries

Funding

  1. Churchill College
  2. STFC [ST/G00269X/1] Funding Source: UKRI
  3. Science and Technology Facilities Council [ST/G00269X/1] Funding Source: researchfish

Ask authors/readers for more resources

We model the overall shape of an accretion disc in a semidetached binary system in which mass is transferred on to a spinning black hole the spin axis of which is misaligned with the orbital rotation axis. We assume the disc is in a steady state. Its outer regions are subject to differential precession caused by tidal torques of the companion star. These tend to align the outer parts of the disc with the orbital plane. Its inner regions are subject to differential precession caused by the Lense-Thirring effect. These tend to align the inner parts of the disc with the spin of the black hole. We give full numerical solutions for the shape of the disc for some particular disc parameters. We then show how an analytic approximation to these solutions can be obtained for the case when the disc surface density varies as a power law with radius. These analytic solutions for the shape of the disc are reasonably accurate even for large misalignments and can be simply applied for general disc parameters. They are particularly useful when the numerical solutions would be slow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available