4.7 Article

Time-dependent three-dimensional spectrum synthesis for Type Ia supernovae

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 398, Issue 4, Pages 1809-1826

Publisher

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-2966.2009.15256.x

Keywords

radiative transfer; methods: numerical; supernovae: general

Ask authors/readers for more resources

A Monte Carlo code (artis) for modelling time-dependent three-dimensional spectral synthesis in chemically inhomogeneous models of Type Ia supernova ejecta is presented. Following the propagation of gamma-ray photons, emitted by the radioactive decay of the nucleosynthesis products, energy is deposited in the supernova ejecta and the radiative transfer problem is solved self-consistently, enforcing the constraint of energy conservation in the comoving frame. Assuming a photoionization-dominated plasma, the equations of ionization equilibrium are solved together with the thermal balance equation adopting an approximate treatment of excitation. Since we implement a fully general treatment of line formation, there are no free parameters to adjust. Thus, a direct comparison between synthetic spectra and light curves, calculated from hydrodynamic explosion models, and observations is feasible. The code is applied to the well-known W7 explosion model and the results tested against other studies. Finally, the effect of asymmetric ejecta on broad-band light curves and spectra is illustrated using an elliptical toy model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available