4.7 Article

The main-sequence rotation-colour relation in the Coma Berenices open cluster

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 400, Issue 1, Pages 451-462

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2009.15476.x

Keywords

methods: data analysis; techniques: photometric; stars: activity; stars: rotation; open clusters and associations: individual: Melotte 111

Funding

  1. National Aeronautics and Space Administration
  2. National Science Foundation
  3. Science and Technology Facilities Council [PP/D000890/1, ST/G002355/1, PP/D000955/1, PP/F000073/1, PP/F000081/1, ST/G001987/1, PP/D000963/1, PP/F000057/1, ST/F002599/1, ST/G002533/1] Funding Source: researchfish
  4. STFC [PP/D000890/1, ST/G002533/1, ST/F002599/1, ST/G002355/1, ST/G001987/1, PP/F000081/1, PP/D000963/1, PP/F000073/1, PP/D000955/1, PP/F000057/1] Funding Source: UKRI

Ask authors/readers for more resources

We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (similar to 600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P proportional to t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available