4.7 Review

Inclination- and dust-corrected galaxy parameters: bulge-to-disc ratios and size-luminosity relations

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 388, Issue 4, Pages 1708-1728

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2966.2008.13506.x

Keywords

radiative transfer; dust, extinction; galaxies : fundamental parameters; galaxies : photometry; galaxies : spiral; galaxies : structure

Ask authors/readers for more resources

While galactic bulges may contain no significant dust of their own, the dust within galaxy discs can strongly attenuate the light from their embedded bulges. Furthermore, such dust inhibits the ability of observationally determined inclination corrections to recover intrinsic (i.e. dust-free) galaxy parameters. Using the sophisticated 3D radiative transfer model of Popescu et al. and Tuffs et al., together with the recent determination of the average face-on opacity by Driver et al. in nearby disc galaxies, we provide simple equations to correct (observed) disc central surface brightness and scalelengths for the effects of both inclination and dust in the B, V, I, J and K passbands. We then collate and homogenize various literature data sets and determine the typical intrinsic scalelengths, central surface brightness and magnitudes of galaxy discs as a function of morphological type. All galaxies have been carefully modelled in their respective papers with a Sersic R(1/n) bulge plus an exponential disc. Using the bulge magnitude corrections from Driver et al., we additionally derive the average, dust-corrected, bulge-to-disc flux ratio as a function of galaxy type. With values typically less than 1/3, this places somewhat uncomfortable constraints on some current semi-analytic simulations. Typical bulge sizes, profile shapes, surface brightness and deprojected densities are provided. Finally, given the two-component nature of disc galaxies, we present luminosity-size and (surface brightness)-size diagrams for discs and bulges. We also show that the distribution of elliptical galaxies in the luminosity-size diagram is not linear but strongly curved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available