4.7 Article

A generalization of the mass-sheet degeneracy producing ring-like artefacts in the lens mass distribution

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 386, Issue 1, Pages 307-312

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2966.2008.13026.x

Keywords

gravitational lensing; dark matter

Ask authors/readers for more resources

The inversion of a gravitational lens system is, as is well known, plagued by the so-called mass-sheet degeneracy: one can always rescale the density distribution of the lens and add a constant-density mass sheet such that the, also properly rescaled, source plane is projected on to the same observed images. For strong lensing systems, it is often claimed that this degeneracy is broken as soon as two or more sources at different redshifts are available. This is definitely true in the strict sense that it is then impossible to add a constant-density mass sheet to the rescaled density of the lens without affecting the resulting images. However, often one can easily construct a more general mass distribution - instead of a constant-density sheet of mass - which gives rise to the same effect: a uniform scaling of the sources involved without affecting the observed images. We show that this can be achieved by adding one or more circularly symmetric mass distributions, each with its own centre of symmetry, to the rescaled mass distribution of the original lens. As it uses circularly symmetric distributions, this procedure can lead to the introduction of ring-shaped features in the mass distribution of the lens. In this paper, we show explicitly how degenerate inversions for a given strong lensing system can be constructed. It then becomes clear that many constraints are needed to effectively break this degeneracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available