4.6 Article

Design, Synthesis and Evaluation of the Antibacterial Enhancement Activities of Amino Dihydroartemisinin Derivatives

Journal

MOLECULES
Volume 18, Issue 6, Pages 6866-6882

Publisher

MDPI AG
DOI: 10.3390/molecules18066866

Keywords

dihydroartemisinin; derivatives; antibiotic resistance; antibacterial activity; synergistic effect; beta-lactam antibiotic

Funding

  1. Sci-Tech of Chongqing [CSTC 2009BA5008]
  2. National Natural Science Foundation of China [81173103]

Ask authors/readers for more resources

Artemisinin (ART) and its derivatives artesunate (AS), dihydroartemisinin (DHA) are a group of drugs containing a sesquiterpene lactone used to treat malaria. Previously, AS was shown to not have antibacterial activity but to significantly increase the antibacterial activities of beta-lactam antibiotics against E. coli. Herein, molecular docking experiments showed that ART, AS and DHA could dock into AcrB very well, especially DHA and AS; both DHA and AS had the same docking pose. The affinity between AS and AcrB seemed weaker than that of DHA, while the succinate tail of AS, which was like a bug, could extend in the binding pocket very well. Imitating the parent nucleus of DHA and the succinate tail of AS, twenty-one DHA derivatives 4a-u were designed and synthesized. Among them, seventeen were new compounds. The synergistic effects against E. coli AG100A/pET28a-AcrB showed among the new structures 4k, 4l, 4m, 4n, and 4r exhibited significant synergism with beta-lactam antibiotics although they had no direct antibacterial activities themelves. The bacterial growth assay showed that only 4k in combination with ampicillin or cefuroxime could totally inhibit bacterial growth from 0 to 12 h, demonstrating that 4k had the best antibacterial enhancement effect. In conclusion, our results provided a new idea and several candidate compounds for antibacterial activity enhancers against multidrug resistant E. coli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available