4.7 Article

Sustained miRNA-mediated Knockdown of Mutant AAT With Simultaneous Augmentation of Wild-type AAT Has Minimal Effect on Global Liver miRNA Profiles

Journal

MOLECULAR THERAPY
Volume 20, Issue 3, Pages 590-600

Publisher

CELL PRESS
DOI: 10.1038/mt.2011.292

Keywords

-

Funding

  1. NHLBI [HL69877]
  2. Cystic Fibrosis Foundation
  3. Alpha-1 Antitrypsin Foundation
  4. Parker B Francis Foundation
  5. Diabetes and Endocrinology Research Center of University of Massachusetts Medical School [P30 DK32520]

Ask authors/readers for more resources

alpha-1 antitrypsin (AAT) deficiency can exhibit two pathologic states: a lung disease that is primarily due to the loss of AAT's antiprotease function, and a liver disease resulting from a toxic gain-of-function of the PiZ-AAT (Z-AAT) mutant protein. We have developed several recombinant adeno-associated virus (rAAV) vectors that incorporate microRNA (miRNA) sequences targeting the AAT gene while also driving the expression of miRNA-resistant wild-type AAT-PiM (M-AAT) gene, thus achieving concomitant Z-AAT knockdown in the liver and increased expression of M-AAT. Transgenic mice expressing the human PiZ allele treated with dual-function rAAV9 vectors showed that serum PiZ was stably and persistently reduced by an average of 80%. Treated animals showed knockdown of Z-AAT in liver and serum with concomitant increased serum M-AAT as determined by allele-specific enzyme-linked immunosorbent assays (ELISAs). In addition, decreased globular accumulation of misfolded Z-AAT in hepatocytes and a reduction in inflammatory infiltrates in the liver was observed. Results from microarray studies demonstrate that endogenous miRNAs were minimally affected by this treatment. These data suggests that miRNA mediated knockdown does not saturate the miRNA pathway as has been seen with viral vector expression of short hairpin RNAs (shRNAs). This safe dual-therapy approach can be applied to other disorders such as amyotrophic lateral sclerosis, Huntington disease, cerebral ataxia, and optic atrophies. Received 28 September 2011; accepted 8 December 2011; published online 17 January 2012. doi:10.1038/mt.2011.292

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available