4.7 Article

Effect of Genome Size on AAV Vector Packaging

Journal

MOLECULAR THERAPY
Volume 18, Issue 1, Pages 80-86

Publisher

CELL PRESS
DOI: 10.1038/mt.2009.255

Keywords

-

Funding

  1. NATIONAL EYE INSTITUTE [ZIAEY000443] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Adeno-associated virus (AAV) vector genomes have been limited to 5 kilobases (kb) in length because their packaging limit was thought to be similar to the size of the parent AAV genome. Recent reports claim that significantly larger vector genomes can be packaged intact. We examined the packaged vector genomes from plasmid-encoded AAV vectors that ranged from 4.7 to 8.7 kb in length, using AAV types 2, 5, and 8 capsids. Southern blot analysis indicated that packaged AAV vector genomes never exceeded 5.2 kb in length irrespective of the size of the plasmid-encoded vector or the capsid type. This result was confirmed by vector genome probing with strand-specific oligonucleotides. The packaged vector genomes derived from plasmid-encoded vectors exceeding 5 kb were heterogeneous in length and truncated on the 5' end. Despite their truncated genomes, vector preparations produced from plasmid-encoded vectors exceeding 5.2 kb mediated reporter gene expression in vitro at high multiplicity of infection (MOI). The efficiency of expression was substantially lower than that of reporter vectors with genomes <5 kb in length. We propose that transcriptionally functional, intact vector genomes are generated in cells transduced at high MOI from the fragmentary genomes of these larger vectors, probably by recombination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available