4.7 Article

Adoptive Transfer of Ex Vivo HO-1 Modified Bone Marrow-derived Macrophages Prevents Liver Ischemia and Reperfusion Injury

Journal

MOLECULAR THERAPY
Volume 18, Issue 5, Pages 1019-1025

Publisher

CELL PRESS
DOI: 10.1038/mt.2009.285

Keywords

-

Funding

  1. NIH [RO1 DK062357, AI23847, AI42223]
  2. Dumont Research Foundation

Ask authors/readers for more resources

Macrophages play a critical role in the pathophysiology of liver ischemia and reperfusion (IR) injury (IRI). However, macrophages that overexpress antioxidant heme oxygenase-1 (HO-1) may exert profound anti inflammatory functions. This study explores the cytoprotective effects and mechanisms of ex vivo modified HO-1-expressing bone marrow-derived macrophages (BMDMs) in well-defined mouse model of liver warm ischemia followed by reperfusion. Adoptive transfer of Ad-HO-1-transduced macrophages prevented IR-induced hepatocellular damage, as evidenced by depressed serum glutamic-oxaloacetic transaminase (sGOT) levels and preserved liver histology (Suzuki scores), compared to Ad-beta-gal controls. This beneficial effect was reversed following concomitant treatment with HO-1 siRNA. Ad-HO-1-transfected macrophages significantly decreased local neutrophil accumulation, TNF-alpha/IL-1 beta, IFN-gamma/E-selectin, and IP-10/MCP-1 expression, caspase-3 activity, and the frequency of apoptotic cells, as compared with controls. Unlike in controls, Ad-HO-1-transfected macrophages markedly increased hepatic expression of antiapoptotic Bcl-2/Bcl-xl and depressed caspase-3 activity. These results establish the precedent for a novel investigative tool and provide the rationale for a clinically attractive new strategy in which native macrophages can be transfected ex vivo with cytoprotective HO-1 and then infused, if needed, to prospective recipients exposed to hepatic IR-mediated local inflammation, such as during liver transplantation, resection, or trauma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available