4.7 Article

Molecular Evolution of Adeno-associated Virus for Enhanced Glial Gene Delivery

Journal

MOLECULAR THERAPY
Volume 17, Issue 12, Pages 2088-2095

Publisher

CELL PRESS
DOI: 10.1038/mt.2009.184

Keywords

-

Funding

  1. Alzheimer's Association [NIRG-05-13529]
  2. NIH [R21 EY016994, T32 GM08352]
  3. NSF

Ask authors/readers for more resources

The natural tropism of most viral vectors, including adeno-associated viral (AAV) vectors, leads to predominant transduction of neurons and epithelia within the central nervous system (CNS) and retina. Despite the clinical relevance of glia for homeostasis in neural tissue, and as causal contributors in genetic disorders such as Alzheimer's and amyotrophic lateral sclerosis, efforts to develop more efficient gene delivery vectors for glia have met with limited success. Recently, viral vector engineering involving high-throughput random diversification and selection has enabled the rapid creation of AAV vectors with valuable new gene delivery properties. We have engineered novel AAV variants capable of efficient glia transduction by employing directed evolution with a panel of four distinct AAV libraries, including a new semi-random peptide replacement strategy. These variants transduced both human and rat astrocytes in vitro up to 15-fold higher than their parent serotypes, and injection into the rat striatum yielded astrocyte transduction levels up to 16% of the total transduced cell population, despite the human astrocyte selection platform. Furthermore, one variant exhibited a substantial shift in tropism toward Muller glia within the retina, further highlighting the general utility of these variants for efficient glia transduction in multiple species within the CNS and retina.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available