4.6 Article

Clustering phenotype populations by genome-wide RNAi and multiparametric imaging

Journal

MOLECULAR SYSTEMS BIOLOGY
Volume 6, Issue -, Pages -

Publisher

WILEY
DOI: 10.1038/msb.2010.25

Keywords

DNA damage response signalling; massively parallel phenotyping; phenotype networks; RNAi screening

Funding

  1. Studienstiftung
  2. European Commission
  3. Helmholtz Association Alliance for Systems Biology
  4. BMBF
  5. Human Frontiers Sciences Program Organization

Ask authors/readers for more resources

Genetic screens for phenotypic similarity have made key contributions to associating genes with biological processes. With RNA interference (RNAi), highly parallel phenotyping of loss-of-function effects in cells has become feasible. One of the current challenges however is the computational categorization of visual phenotypes and the prediction of biological function and processes. In this study, we describe a combined computational and experimental approach to discover novel gene functions and explore functional relationships. We performed a genome-wide RNAi screen in human cells and used quantitative descriptors derived from high-throughput imaging to generate multiparametric phenotypic profiles. We show that profiles predicted functions of genes by phenotypic similarity. Specifically, we examined several candidates including the largely uncharacterized gene DONSON, which shared phenotype similarity with known factors of DNA damage response (DDR) and genomic integrity. Experimental evidence supports that DONSON is a novel centrosomal protein required for DDR signalling and genomic integrity. Multiparametric phenotyping by automated imaging and computational annotation is a powerful method for functional discovery and mapping the landscape of phenotypic responses to cellular perturbations. Molecular Systems Biology 6: 370; published online 8 June 2010; doi:10.1038/msb.2010.25

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available