4.6 Article

Analysis of protein complexes through model-based biclustering of label-free quantitative AP-MS data

Journal

MOLECULAR SYSTEMS BIOLOGY
Volume 6, Issue -, Pages -

Publisher

WILEY
DOI: 10.1038/msb.2010.41

Keywords

clustering; mass spectrometry; protein complexes; protein-protein interaction; spectral counts

Funding

  1. NIH [R01 CA-126239]
  2. Canadian Institutes of Health Research [MOP-84314]

Ask authors/readers for more resources

Affinity purification followed by mass spectrometry (AP-MS) has become a common approach for identifying protein-protein interactions (PPIs) and complexes. However, data analysis and visualization often rely on generic approaches that do not take advantage of the quantitative nature of AP-MS. We present a novel computational method, nested clustering, for biclustering of label-free quantitative AP-MS data. Our approach forms bait clusters based on the similarity of quantitative interaction profiles and identifies submatrices of prey proteins showing consistent quantitative association within bait clusters. In doing so, nested clustering effectively addresses the problem of overrepresentation of interactions involving baits proteins as compared with proteins only identified as preys. The method does not require specification of the number of bait clusters, which is an advantage against existing model-based clustering methods. We illustrate the performance of the algorithm using two published intermediate scale human PPI data sets, which are representative of the AP-MS data generated from mammalian cells. We also discuss general challenges of analyzing and interpreting clustering results in the context of AP-MS data. Molecular Systems Biology 6: 385; published online 22 June 2010; doi:10.1038/msb.2010.41

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available