4.6 Article

Modular cell biology: retroactivity and insulation

Journal

MOLECULAR SYSTEMS BIOLOGY
Volume 4, Issue -, Pages -

Publisher

WILEY
DOI: 10.1038/msb4100204

Keywords

feedback; insulation; modularity; singular perturbation

Funding

  1. NIGMS NIH HHS [R01GM063642, R01 GM063642] Funding Source: Medline

Ask authors/readers for more resources

Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input-output dynamic characteristics of transcriptional components, focusing on a property, which we call 'retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation-dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available