4.3 Article

A new perspective on the order-n algorithm for computing correlation functions

Journal

MOLECULAR SIMULATION
Volume 35, Issue 12-13, Pages 1084-1097

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/08927020902818039

Keywords

correlation; diffusion; order-n

Funding

  1. National Science Foundation [CTS-0507013]
  2. Defense Threat Reduction Agency

Ask authors/readers for more resources

A method to measure correlations is presented that can be shown to be identical to the original 'order-n algorithm' from Frenkel and Smit (Understanding Molecular Simulation, Academic Press, 2002). In contrast to their work, we present the algorithm without the use of 'block sums of velocities'. We show that the algorithm gives identical results compared to standard correlation methods for the time points at which the correlation is computed. We apply the algorithm to compute diffusion of methane and benzene in the metal-organic framework IRMOF-1 and focus on the computation of the mean-squared displacement, the velocity autocorrelation function (VACF), and the angular VACF. Other correlation functions can readily be computed using the same algorithm. The savings in computer time and memory result from a reduction of the number of time points, as they can be chosen non-uniformly. In addition, the algorithm is significantly easier to implement than standard methods. Source code for the algorithm is given.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available