4.3 Review

Comparative Biology of Sperm Factors and Fertilization-Induced Calcium Signals Across the Animal Kingdom

Journal

MOLECULAR REPRODUCTION AND DEVELOPMENT
Volume 80, Issue 10, Pages 787-815

Publisher

WILEY
DOI: 10.1002/mrd.22222

Keywords

-

Ask authors/readers for more resources

Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca2+) in all animals that have been examined, and such Ca2+ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca2+ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca2+ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLC, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca2+ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca2+ signals are typically propagated as global waves that depend on Ca2+ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP3). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca2+ transients are also examined. In addition, the importance of fertilization-induced Ca2+ signals for activating development is underscored by noting some major downstream effects of these signals in various animals. Mol. Reprod. Dev. 80: 787-815, 2013. (c) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available