4.8 Article

Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities

Journal

MOLECULAR PSYCHIATRY
Volume 19, Issue 10, Pages 1133-1142

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/mp.2014.61

Keywords

-

Funding

  1. NIH [NINDS NS21725, NIDCD DC008802, NINDS T32-NS061764]
  2. Tufts Center for Neuroscience Research [NINDS P30 NS047243]

Ask authors/readers for more resources

Intellectual disabilities (IDs) and autism spectrum disorders link to human APC inactivating gene mutations. However, little is known about adenomatous polyposis coli's (APC's) role in the mammalian brain. This study is the first direct test of the impact of APC loss on central synapses, cognition and behavior. Using our newly generated APC conditional knock-out (cKO) mouse, we show that deletion of this single gene in forebrain neurons leads to a multisyndromic neurodevelopmental disorder. APC cKO mice, compared with wild-type littermates, exhibit learning and memory impairments, and autistic-like behaviors (increased repetitive behaviors, reduced social interest). To begin to elucidate neuronal changes caused by APC loss, we focused on the hippocampus, a key brain region for cognitive function. APC cKO mice display increased synaptic spine density, and altered synaptic function (increased frequency of miniature excitatory synaptic currents, modestly enhanced long-term potentiation). In addition, we found excessive beta-catenin levels and associated changes in canonical Wnt target gene expression and N-cadherin synaptic adhesion complexes, including reduced levels of presenilin1. Our findings identify some novel functional and molecular changes not observed previously in other genetic mutant mouse models of co-morbid cognitive and autistic-like disabilities. This work thereby has important implications for potential therapeutic targets and the impact of their modulation. We provide new insights into molecular perturbations and cell types that are relevant to human ID and autism. In addition, our data elucidate a novel role for APC in the mammalian brain as a hub that links to and regulates synaptic adhesion and signal transduction pathways critical for normal cognition and behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available