4.8 Article

Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition

Journal

MOLECULAR PSYCHIATRY
Volume 19, Issue 5, Pages 588-598

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/mp.2013.83

Keywords

AMPA receptor; estrogen; NMDA receptor; recognition memory; stress

Funding

  1. NIH [MH85774]

Ask authors/readers for more resources

Converging evidence suggests that females and males show different responses to stress; however, little is known about the mechanism underlying the sexually dimorphic effects of stress. In this study, we found that young female rats exposed to 1 week of repeated restraint stress show no negative effects on temporal order recognition memory (TORM), a cognitive process controlled by the prefrontal cortex (PFC), which was contrary to the impairment in TORM observed in stressed males. Concomitantly, normal glutamatergic transmission and glutamate receptor surface expression in PFC pyramidal neurons were found in repeatedly stressed females, in contrast to the significant reduction seen in stressed males. The detrimental effects of repeated stress on TORM and glutamate receptors were unmasked in stressed females when estrogen receptors were inhibited or knocked down in PFC, and were prevented in stressed males with the administration of estradiol. Blocking aromatase, the enzyme for the biosynthesis of estrogen, revealed the stress-induced glutamatergic deficits and memory impairment in females, and the level of aromatase was significantly higher in the PFC of females than in males. These results suggest that estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and PFC-dependent cognition, which may underlie the stress resilience of females.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available