4.5 Article

The Immunity Regulator BAK1 Contributes to Resistance Against Diverse RNA Viruses

Journal

MOLECULAR PLANT-MICROBE INTERACTIONS
Volume 26, Issue 11, Pages 1271-1280

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-06-13-0179-R

Keywords

-

Funding

  1. Swiss National Science Foundation (SNF) [140694, 144084]

Ask authors/readers for more resources

The plant's innate immune system detects potential biotic threats through recognition of microbe-associated molecular patterns (MAMPs) or danger-associated molecular patterns (DAMPs) by pattern recognition receptors (PRR). A central regulator of pattern-triggered immunity (PTI) is the Bill-associated kinase 1 (BAK1), which undergoes complex formation with PRR upon ligand binding. Although viral patterns inducing PTI are well known from animal systems, nothing similar has been reported for plants. Rather, antiviral defense in plants is thought to be mediated by post-transcriptional gene silencing of viral RNA or through effector-triggered immunity, i.e., recognition of virus-specific effectors by resistance proteins. Nevertheless, infection by compatible viruses can also lead to the induction of defense gene expression, indicating that plants may also recognize viruses through PTI. Here, we show that PTI, or at least the presence of the regulator BAK1, is important for antiviral defense of Arabidopsis plants. Arabidopsis bak1 mutants show increased susceptibility to three different RNA viruses during compatible interactions. Furthermore, crude viral extracts but not purified virions induce several PTI marker responses in a BAK1-dependent manner. Overall, we conclude that BAK1-dependent PTI contributes to antiviral resistance in plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available