4.5 Article

The 2b Silencing Suppressor of a Mild Strain of Cucumber mosaic virus Alone Is Sufficient for Synergistic Interaction with Tobacco mosaic virus and Induction of Severe Leaf Malformation in 2b-Transgenic Tobacco Plants

Journal

MOLECULAR PLANT-MICROBE INTERACTIONS
Volume 24, Issue 6, Pages 685-693

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-12-10-0290

Keywords

-

Funding

  1. Academy of Finland [128943, 127203, 1134335, 1134759]
  2. Academy of Finland (AKA) [128943, 127203, 127203, 128943] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

Tobacco plants infected simultaneously by Tobacco mosaic virus (TMV) and Cucumber mosaic virus (CMV) are known to produce a specific synergistic disease in which the emerging leaves are filiformic. Similar developmental malformations are also caused to a lesser extent by the severe strains (e.g., Fny) of CMV alone, but mild strains (e.g., Kin) cause them only in mixed infection with TMV. We show here that transgenic tobacco plants expressing 2b protein of CMV-Kin produce filiformic symptoms when infected with TMV, indicating that only 2b protein is needed from CM V-Kin for this synergistic relationship. On the other hand, transgenic plants that express either the wild-type TMV genome or a modified TMV genome with its coat protein deleted or movement protein (MP) inactivated also develop filiformic or at least distinctly narrow leaves, while plants expressing the MP alone do not develop any malformations when infected with CMV-Kin. These results show that either TMV helicase/replicase protein or active TMV replication are required for this synergistic effect. The effect appears to be related to an efficient depletion of silencing machinery, caused jointly by both viral silencing suppressors, i.e., CMV 2b protein and the TMV 126-kDa replicase subunit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available