4.7 Article

Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation

Journal

MOLECULAR PLANT PATHOLOGY
Volume 14, Issue 6, Pages 589-601

Publisher

WILEY
DOI: 10.1111/mpp.12034

Keywords

-

Categories

Funding

  1. Greek General Secretariat for Research Technology [74]
  2. Onassis Foundation

Ask authors/readers for more resources

Various plant factors are co-opted by virus elements (RNA, proteins) and have been shown to act in pathways affecting virus accumulation and plant defence. Here, an interaction between Pepino mosaic virus (PepMV) triple gene block protein 1 (TGBp1; p26) and tomato catalase 1 (CAT1), a crucial enzyme in the decomposition of toxic hydrogen peroxide (H2O2), was identified using the yeast two-hybrid assay, and confirmed via an invitro pull-down assay and bimolecular fluorescent complementation (BiFC) inplanta. Each protein was independently localized within loci in the cytoplasm and nuclei, sites at which their interaction had been visualized by BiFC. Following PepMV inoculation, CAT mRNA and protein levels in leaves were unaltered at 0, 3 and 6 days (locally) and 8 days (systemically) post-inoculation; however, leaf extracts from the last two time points contained increased CAT activity and lower H2O2 levels. Overexpression of PepMV p26 invitro and inplanta conferred the same effect, suggesting an additional involvement of TGBp1 in potexvirus pathogenesis. The accumulation of PepMV genomic and subgenomic RNAs and the expression of viral coat protein in noninoculated (systemic) leaves were reduced significantly in CAT-silenced plants. It is postulated that, during PepMV infection, a p26-CAT1 interaction increases H2O2 scavenging, thus acting as a negative regulator of plant defence mechanisms to promote PepMV infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available