4.7 Review

Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice

Journal

MOLECULAR PLANT
Volume 6, Issue 2, Pages 250-260

Publisher

CELL PRESS
DOI: 10.1093/mp/sss147

Keywords

abiotic; biotic; crosstalk; defense response; hormone; systems biology; stress

Funding

  1. Office of Biological and Environmental Research of the United States DOE [DE-AC0205CH11231]
  2. United States Department of Agriculture National Institute of Food and Agriculture [2011-67009-30153]
  3. Research Foundation Flanders (FWO-Vlaanderen)
  4. NIFA [579716, 2011-67009-30153] Funding Source: Federal RePORTER

Ask authors/readers for more resources

The XA21, NH1, and SUB1A genes control the rice response to biotic and abiotic stresses. Interactomics and computational network analysis of these genes led to identification of shared signaling components. Together, these shape the outcome of stress crosstalk by modulating hormone signaling and cellular energy homeostasis.Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and crosstalk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and proteomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUB1A, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-1-related protein kinase-1 (SnRK1), SUB1A binding protein 23 (SAB23), and several WRKY family transcription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available