4.7 Article

Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense

Journal

MOLECULAR PLANT
Volume 1, Issue 3, Pages 459-470

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mp/ssn020

Keywords

-

Funding

  1. US National Science Foundation [MCB-0209819]

Ask authors/readers for more resources

Plant WRKY transcription factors can function as either positive or negative regulators of plant basal disease resistance. Arabidopsis WRKY48 is induced by mechanical and/or osmotic stress due to infiltration and pathogen infection and, therefore, may play a role in plant defense responses. WRKY48 is localized to the nucleus, recognizes the TTGACCW-box sequence with a high affinity in vitro and functions in plant cells as a strong transcriptional activator. To determine the biological functions directly, we have isolated loss-of-function T-DNA insertion mutants and generated gain-of-function transgenic overexpression plants for WRKY48 in Arabidopsis. Growth of a virulent strain of the bacterial pathogen Pseudomonas syringae was decreased in the wrky48 T- DNA insertion mutants. The enhanced resistance of the loss-of-function mutants was associated with increased induction of salicylic acid-regulated PR1 by the bacterial pathogen. By contrast, transgenic WRKY48-overexpressing plants support enhanced growth of P. syringae and the enhanced susceptibility was associated with reduced expression of defense-related PR genes. These results suggest that WRKY48 is a negative regulator of PR gene expression and basal resistance to the bacterial pathogen P. syringae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available