4.4 Article

Nematic and lamellar liquid-crystalline phases in suspensions of charged silica-coated gibbsite platelets

Journal

MOLECULAR PHYSICS
Volume 113, Issue 9-10, Pages 1053-1060

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268976.2014.985276

Keywords

plate-like colloids; double-layer repulsion; phase behaviour; liquid crystals

Funding

  1. Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO)

Ask authors/readers for more resources

Computer simulations, theoretical investigations and experiments carried out over the last 20 years have demonstrated that suspensions of hard plate-like colloids display a rich liquid-crystal phase behaviour including nematic and columnar phases. Recently, it has become clear that charged colloidal platelets display an even richer phase behaviour including smectic A and smectic B phases. Here, we report on the formation of liquid crystals in suspensions of charged silica-coated gibbsite platelets in dimethylformamide in the presence of 1 mM salt and without added salt. A nematic phase is observed in the system with added salt, while in the system without added salt a lamellar (smectic A) liquid-crystalline phase is formed as demonstrated by optical observations and synchrotron small angle X-ray scattering measurements. The observed phases are in contrast with the columnar phase that would be expected if the platelets were interacting through hard-core repulsions. A bifurcation analysis suggests that, on decreasing ionic strength, first the columnar phase is destabilised in favour of nematic order, which in turn is destabilised in favour of lamellar order. Our experimental and theoretical results support the suggestion that the appearance of nematic and lamellar phases is related to the strength and range of the double-layer repulsion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available