4.4 Article

VPT2+K spectroscopic constants and matrix elements of the transformed vibrational Hamiltonian of a polyatomic molecule with resonances using Van Vleck perturbation theory

Journal

MOLECULAR PHYSICS
Volume 112, Issue 2, Pages 261-300

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268976.2013.808386

Keywords

molecular vibrations; Van Vleck perturbation theory; vibrational energy levels; spectroscopic constants; resonances

Funding

  1. Howard Hughes Medical Institute
  2. National Science Foundation [CHE-0624602, CHE-1039925]

Ask authors/readers for more resources

Vibrational levels of polyatomic molecules are analysed with Van Vleck perturbation theory to connect experimental energy levels to computed molecular potential energy surfaces. Vibrational matrix elements are calculated from a quartic potential function via second-order Van Vleck perturbation theory, a procedure that treats both weak and strong interactions among vibrational states by approximately block-diagonalising the vibrational Hamiltonian. A clear and complete derivation of anharmonic and resonance constants as well as general expressions for both on- and off-diagonal matrix elements of the transformed Hamiltonian is presented. The equations are written in partial fraction form and as a constant multiplied by a harmonic oscillator matrix element to facilitate removing the effect of strongly interacting resonant states both in analytical formulae and in computer code. The derived equations are validated numerically, and results for the isotopomers of formaldehyde (H2CO, HDCO, D2CO) are included. The implications of the equations on zero-point energy calculations and experimental fits are discussed. The VPT2+K method is defined by these results for use in fitting and calculating vibrational energy levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available