4.7 Article

In situ genetic differentiation in a Hispaniolan lizard (Ameiva chrysolaema): A multilocus perspective

Journal

MOLECULAR PHYLOGENETICS AND EVOLUTION
Volume 49, Issue 1, Pages 277-291

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ympev.2008.06.003

Keywords

Island biogeography; Phylogeography; Coalescence; Multilocus; NCPA; Isolation-with-migration

Funding

  1. National Science Foundation [DEB 0508344]
  2. Society of Integrative and Comparative Biology (MEG)

Ask authors/readers for more resources

A previous phylogeographic study of mitochondrial haplotypes for the Hispaniolan lizard Ameiva chrysolaema revealed deep genetic structure associated with seawater inundation during the late Pliocene/early Pleistocene and evidence of subsequent population expansion into formerly inundated areas. We revisit hypotheses generated by our previous study using increased geographic sampling of populations and analysis of three nuclear markers (alpha-enolase intron 8. alpha-cardiac-actin intron 4, and beta-actin intron 3) in addition to mitochondrial haplotypes (ND2). Large genetic discontinuities correspond spatially and temporally with historical barriers to gene flow (sea inundations). NCPA cross-validation analysis and Bayesian multilocus analyses of divergence times (1Ma and MCMCcoal) reveal two separate episodes of fragmentation associated with Pliocene and Pleistocene sea inundations, separating the species into historically separate Northern, East-Central, West-Central, and Southern population lineages. Multilocus Bayesian analysis using 1Ma indicates asymmetrical migration from the East-Central to the West-Central populations following secondary contact, consistent with expectations from the more pervasive sea inundation in the western region. The West-Central lineage has a genetic signature of population growth consistent with the expectation of geographic expansion into formerly inundated areas. Within each lineage, significant spatial genetic structure indicates isolation by distance at comparable temporal scales. This study adds to the growing body of evidence that vicariant speciation may be the prevailing source of lineage accumulation on oceanic islands. Thus, prior theories of island biogeography generally underestimate the role and temporal scale of intra-island vicariant processes. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available