4.5 Article

Acute Disruption of Bone Marrow Hematopoiesis by Benzo(a)pyrene Is Selectively Reversed by Aryl Hydrocarbon Receptor-Mediated Processes

Journal

MOLECULAR PHARMACOLOGY
Volume 79, Issue 4, Pages 724-734

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.110.070631

Keywords

-

Funding

  1. National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [R01-DK072749]
  2. National Institutes of Health National Institute of Environmental Health Sciences [T32-ES007015]
  3. Walter and Martha Renk Endowed Laboratory for Food Safety

Ask authors/readers for more resources

Bone marrow (BM) hematopoietic cells are selectively sensitive to polycyclic aromatic hydrocarbons (PAH) in vivo. 7,12-Dimethylbenz(a) anthracene (DMBA), but not benzo(a) pyrene (BP), depletes BM hematopoietic cells in C57BL/6 mice. This difference is due to a BP-selective aryl hydrocarbon receptor (AhR)-mediated recovery. Colony-forming unit assays show suppression of lymphoid progenitors by each PAH within 6 h but a subsequent recovery, exclusively after BP treatment. Suppression of myeloid progenitors (6 h) occurs only for DMBA. Each progenitor responded equally to DMBA and BP in congenic mice expressing the PAH-resistant AhR (AhR(d)). AhR, therefore, mediates this BP recovery in each progenitor type. These PAH suppressions depend on Cyp1b1-mediated metabolism. Paradoxically, few genes responded to DMBA, whereas 12 times more responded to BP. Progenitor suppression by DMBA, therefore, occurs with minimal effects on the general BM population. Standard AhR-mediated stimulations (Cyp1a1, Cyp1b1, Ahrr) were similar for each PAH and for the specific agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin but were absent in AhR(d) mice. A group of 12 such AhR responses was sustained from 6 to 24 h. A second, larger set of BP responses (chemokines, cytokines, cyclooxygenase 2) differed in two respects; DMBA responses were low and BP responses declined extensively from 6 to 24 h. A third cluster exhibited BP-induced increases in protective genes (Nqo1, GST-mu) that appeared only after 12 h. Conversion of BP to quinones contributes oxidative signaling not seen with DMBA. We propose that genes in this second cluster, which share oxidative signaling and AhR activation, provide the AhR-dependent protection of hematopoietic progenitors seen for BP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available