4.5 Article

Ligand-receptor interactions at the parathyroid hormone receptors: Subtype binding selectivity is mediated via an interaction between residue 23 on the ligand and residue 41 on the receptor

Journal

MOLECULAR PHARMACOLOGY
Volume 74, Issue 3, Pages 605-613

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.108.048017

Keywords

-

Funding

  1. BBSRC
  2. GlaxoSmithKline

Ask authors/readers for more resources

Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) bind and activate the PTH/PTHrP receptor (PTH-1R). However, while the related receptor PTH-2R responds potently to PTH, it is not activated by PTHrP. Two hormone sites are known to be responsible for these different potencies. First, the absence of efficacy for PTHrP at PTH-2R is due to the presence of His-5 in PTHrP (IIe-5 in PTH), which interacts with the receptor's juxtamembrane domain. Second, PTHrP has lower affinity than PTH for PTH-2R because of the presence of Phe-23 (Trp-23 in PTH), which interacts with the receptor's N-terminal extracellular domain. We used these different receptor subtype properties to demonstrate that residue 41 in PTH-1R, when either the native Leu or substituted by IIe or Met, can accommodate either Phe or Trp at position 23 of the ligand. However, when Leu-41 is substituted by a smaller side chain, either Ala or Val (its equivalent residue in PTH-2R), the receptor becomes highly selective for those peptide ligands with Trp-23. Hence, despite the conservative nature of the substitutions found in the native ligands (Phe for Trp) and receptors (Leu for Val), they nevertheless enable a significant degree of selectivity to be achieved. Analysis of this functionally important ligand-receptor contact, within the context of the recent X-ray structure of the peptide-bound PTH-1R N domain, reveals the nature of the selectivity filter and how it is by-passed in PTH-1R.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available