4.5 Article

Mutations to the kainate receptor subunit GluR6 binding pocket that selectively affect domoate binding

Journal

MOLECULAR PHARMACOLOGY
Volume 74, Issue 4, Pages 1163-1169

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.108.048819

Keywords

-

Funding

  1. UK Medical Research Council
  2. MRC [G0200084] Funding Source: UKRI
  3. Medical Research Council [G0200084] Funding Source: researchfish

Ask authors/readers for more resources

Kainate receptor responses to domoate are characterized by large steady-state currents and slow deactivation kinetics. To improve our understanding of these responses, we mutated residues at the mouth of the agonist binding pocket of GluR6 using whole-cell electrophysiology to characterize the effects of the mutants. We identified two residues where mutations had significant ligand-specific effects. One, Met691, forms a hydrogen bond that seems to facilitate domoate binding by affecting the main-chain conformation. We found that mutation of Met691 to alanine significantly attenuated responses to domoate but had no effect on responses to glutamate, confirming the importance of this main-chain interaction in GluR6. The second residue, Val685, is located at the mouth of the binding pocket, adjacent to the domoate side-arm. Mutation of Val685 to glutamine increased the rate of decay from steady-state responses to domoate by more than 50-fold but had no effect on the rate or extent of desensitization or on the kinetics of responses to either glutamate or kainate. The V685Q mutant also significantly reduced the potencies of both glutamate (peak) and domoate (peak and steady-state). Empirical analysis using a basic kinetic model indicated that the V685Q phenotype could be fully explained by faster ligand dissociation. The V685Q mutant accelerated receptor deactivation without affecting either desensitization or gating, making it a potentially useful tool for further dissection of ligand binding and gating in kainate receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available