4.7 Article

Cyclic Peptide-Capped Gold Nanoparticles as Drug Delivery Systems

Journal

MOLECULAR PHARMACEUTICS
Volume 10, Issue 2, Pages 500-511

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mp300448k

Keywords

arginine; cellular delivery; cyclic peptide; gold nanoparticle; tryptophan

Funding

  1. American Cancer Society [RSG-07-290-01-CDD]
  2. US National Science Foundation [CHE 0748555]
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [748555] Funding Source: National Science Foundation

Ask authors/readers for more resources

A number of cyclic peptides were synthesized and evaluated as simultaneous reducing and capping agents for generation of cyclic peptide-capped gold nanoparticles (CP-AuNPs). Among them, direct dissolution of cyclic peptides containing alternate arginine and tryptophan [WR](n) (n = 3-5) into an aqueous solution of AuCl4- led to the formation of CP-AuNPs, through the reducing activity of tryptophan residues and attraction of positively charged arginine residues toward chloroaurate anions in the reaction environment. Differential interference contrast microscopy of fluorescence-labeled lamivudine in the presence of [WR](4)-capped AuNPs showed significantly higher cellular delivery of antiviral drug versus that of parent drug alone. Flow cytometry studies also showed that the cellular uptake of fluorescence-labeled lamivudine, emtricitabine, and stavudine was significantly enhanced in human ovarian adenocarcinoma (SK-OV-3) cells in the presence of [WR](4)-AuNPs. For example, fluorescence labeled lamivudine-loaded [WR](4)-AuNPs exhibited approximately 12- and 15-times higher cellular uptake than that of fluorescence labeled lamivudine alone in CCRF-CEM cells and SK-OV-3 cells, respectively. Confocal microscopy revealed that the presence of the [WR](4)-AuNPs enhanced the retention and nuclear localization of doxorubicin in SK-OV-3 cells after 24 h. These data suggest that these complexes can be used as potential noncovalent prodrugs for delivery of antiviral and anticancer agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available