4.7 Article

Comparison of Electron Spin Resonance Spectroscopy and Inductively-Coupled Plasma Optical Emission Spectroscopy for Biodistribution Analysis of Iron-Oxide Nanoparticles

Journal

MOLECULAR PHARMACEUTICS
Volume 7, Issue 2, Pages 375-385

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mp900161h

Keywords

Iron oxide nanoparticles; magnetic nanoparticle biodistribution; electron spin resonance spectroscopy; inductively coupled plasma optical emission spectroscopy; targeted drug delivery; magnetic targeting

Funding

  1. NIH [CA114612, NS066945]
  2. Hartwell Foundation Biomedical Research Award
  3. Ministry of Education, Science and Technology [R31-2008-000-10103-01]
  4. Fred W. Lyons, Jr.
  5. Rackham
  6. NIGMS [GM007767]
  7. American Foundation for Pharmaceutical Education (AFPE)

Ask authors/readers for more resources

Magnetic nanoparticles (MNP) have been widely studied for use in targeted drug delivery. Analysis of MNP biodistribution is essential to evaluating the success of targeting strategies and the potential for off-target toxicity. This work compared the applicability of inductively coupled plasma optical emission spectroscopy (ICP-OES) and electron spin resonance (ESR) spectroscopy in assessing MNP biodistribution. Biodistribution was evaluated in 9L-glioma bearing rats administered with MNP (12-25 mg Fe/kg) under magnetic targeting. Ex vivo analysis of MNP in animal tissues was performed with both ICP-OES and ESR. A cryogenic method was developed to overcome the technical hurdle of loading tissue samples into ESR tubes. Comparison of results from the ICP-OES and ESR measurements revealed two distinct relationships for organs accumulating high or low levels of MNP. In organs with high MNP accumulation such as the liver and spleen, data were strongly correlated (r = 0.97, 0.94 for the liver and spleen, respectively), thus validating the equivalency of the two methods in this high concentration range (>1000 nmol Fe/g tissue). The two sets of measurements, however, differed significantly in organs with lower levels of MNP accumulation such as the brain, kidney, and the tumor. Whereas ESR resolved MNP to 10-55 nmol Fe/g tissue, ICP-OES failed to detect MNP because of masking by endogenous iron. These findings suggest that ESR coupled to cryogenic sample handling is more robust than ICP-OES, attaining better sensitivity in analyses. Such advantages render ESR the method of choice for accurate profiling of MNP biodistribution across tissues with high variability in nanoparticle accumulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available