4.7 Article

Reduced Skin Photosensitivity with meta-Tetra(hydroxyphenyl)chlorin-Loaded Micelles Based on a Poly(2-ethyl-2-oxazoline)-b-poly(D,L-lactide) Diblock Copolymer in Vivo

Journal

MOLECULAR PHARMACEUTICS
Volume 7, Issue 4, Pages 1244-1253

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mp100060v

Keywords

Photodynamic therapy; photosensitizer; micelle; cancer therapy; photosensitivity

Funding

  1. Minister of Economic Affairs [9356E18200]
  2. Department of Health of Taiwan [DOH99-TD-N-111-005]

Ask authors/readers for more resources

Photodynamic therapy (PDT) is a light-induced chemical reaction that produces localized tissue damage for the treatment of cancers and other nonmalignant conditions. The activation of photosensitizers in a target tissue is accomplished with a specific light source in the presence of molecular oxygen. In the clinic, patients treated with PDT should be kept away from direct sunlight or strong indoor lighting to avoid skin phototoxicity. In this study, a photosensitizer encapsulated within a micelle was developed to overcome this problem. The pH-sensitive micelles were successfully incorporated with meta-tetra(hydroxyphenyl)chlorin (mTHPC), and the cytotoxicity and antitumor effects were investigated in vitro and in vivo. Our results demonstrated that PDT with m-THPC-loaded micelles had no significant adverse effects on the body weight of mice in vivo. Furthermore, after an extended delivery time, m-THPC-loaded micelles and free m-THPC had similar antitumor effects, but the m-THPC-loaded micelles had less skin phototoxicity. Thus, this strategy could be used as a potential nanocarrier for PDT-mediated cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available