4.7 Article

Fluorophore-Quencher Based Activatable Targeted Optical Probes for Detecting in Vivo Cancer Metastases

Journal

MOLECULAR PHARMACEUTICS
Volume 6, Issue 2, Pages 386-395

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mp800115t

Keywords

Molecular imaging; FRET; photoquencher; activatable; cancer

Funding

  1. NIH
  2. National Cancer Institute
  3. Center for Cancer Research
  4. NATIONAL CANCER INSTITUTE [ZIABC010656, ZIABC010657] Funding Source: NIH RePORTER

Ask authors/readers for more resources

In vivo molecularly targeted fluorescence imaging of tumors has been proposed as a strategy for improving cancer detection and management. Activatable fluorophores, which increased their fluorescence by 10-fold after binding tumor cells, result in much higher target to background ratios than conventional fluorophores. We developed an in vivo targeted activatable optical imaging probe based on a fluorophore-quencher pair, bound to a targeting moiety. With this system, fluorescence is quenched by the fluorophore-quencher interaction outside cancer cells, but is activated within the target cells by dissociation of the fluorophore-quencher pair. We selected the TAMRA (fluorophore)-QSY7 (quencher) pair and conjugated it to either avidin (targeting the D-galactose receptor) or trastuzumab (a monoclonal antibody against the human epithelial growth factor receptor type2 (HER2/neu)) and evaluated their performance in mouse models of cancer. Two probes, TAMRA-QSY7 conjugated avidin (Av-TM-Q7) and trastuzumab (Traz-TM-07) were synthesized. Both demonstrated better than similar self-quenching probes. In vitro fluorescence microscopic studies of SHIN3 and NIH/3T3/HER2+ cells demonstrated that Av-TM-Q7 and Traz-TM-Q7 produced high intracellular fluorescent signal. In vivo imaging with Av-TM-Q7 and Traz-TM-07 in mice enabled the detection of small tumors. This molecular imaging probe, based on a fluorophore-quencher pair conjugated to a targeting ligand, successfully detected tumors in vivo due to its high activation ratio and low background signal. Thus, these activatable probes, based on the fluorophore-quencher system, hold promise clinically for see and treat strategies of cancer management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available