4.7 Article Proceedings Paper

Cell Uptake and in Vitro Toxicity of Magnetic Nanoparticles Suitable for Drug Delivery

Journal

MOLECULAR PHARMACEUTICS
Volume 6, Issue 5, Pages 1417-1428

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mp900083m

Keywords

Toxicity; confocal microscopy; MTT assay; retinal pigment epithelial cells; magnetic nanoparticles; phagocytosis; polyethylene glycole (PEG); polyethylene oxide (PEO)

Ask authors/readers for more resources

Magnetic targeting is useful for intravascular or intracavitary drug delivery, including tumor chemotherapy or intraocular antiangiogenic therapy. For all such in vivo applications, the magnetic drug carrier must be biocompatible and nontoxic. In this work, we investigated the toxic properties of magnetic nanoparticles coated with polyethylenoxide (PEO) triblock copolymers. Such coatings prevent the aggregation of magnetic nanoparticles and guarantee consistent magnetic and nonmagnetic flow properties. It was found that the PEO tail block length inversely correlates with toxicity. The nanoparticles with the shortest 0.75 kDa PEO tails were the most toxic, while particles coated with the 15 kDa PEO tail block copolymers were the least toxic. Toxicity responses of the tested prostate cancer cell lines (PC3 and C4-2), human umbilical vein endothelial cells (HUVECs), and human retinal pigment epithelial cells (HRPEs) were similar. Furthermore, all cell types took up the coated magnetic nanoparticles. It is concluded that magnetite nanoparticles coated with triblock copolymers containing PEO tail lengths of above 2 kDa are biocompatible and appropriate for in vivo application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available