4.7 Article

Mechanistic Examination of Protein Release from Polymer Nanofibers

Journal

MOLECULAR PHARMACEUTICS
Volume 6, Issue 2, Pages 641-647

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mp800160p

Keywords

Nanofiber; protein; modeling; controlled release

Funding

  1. National Science Foundation [NER-CBET 0708711]
  2. National Center for Research Resources, NIH [C06 RR15482]

Ask authors/readers for more resources

Therapeutic proteins have emerged as a significant class of pharmaceutical agents over the past several decades. The potency, rapid elimination, and systemic side effects have prompted the need of spatiotemporally controlled release for proteins maybe more than any other active therapeutic molecules. This work examines the release of two model protein compounds, bovine serum albumin (BSA) and an anti-integrin antibody (Al), from electrospun polycaprolactone (PCL) nanofiber mats. The anti-integrin antibody was chosen as a model of antibody therapy; in particular, anti-integrin antibodies are a promising class of therapeutic molecules for cancer and angiogenic diseases. The release kinetics were studied experimentally and interpreted in the framework of a recently published theory of desorption-limited drug release from nondegrading-or very slowly degrading-fibers. The results are consistent with a protein release mechanism dominated by desorption from the polymer surface, while the polycaprolactone nanofibers are not degrading at an appreciable rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available