4.3 Article

Tumor necrosis factor-alpha (TNF-α) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes

Journal

MOLECULAR PAIN
Volume 5, Issue -, Pages -

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1186/1744-8069-5-49

Keywords

-

Categories

Funding

  1. NIH [NS 32778]
  2. Central Control of Arthritis and Arthritic Pain [NS11255]
  3. Dana Foundation
  4. University of Kentucky Dean's start-up funds

Ask authors/readers for more resources

Background: We have shown functional expression of several TRP channels on human synovial cells, proposing significance in known calcium dependent proliferative and secretory responses in joint inflammation. The present study further characterizes synoviocyte TRP expression and activation responses to thermal and osmotic stimuli after pre-treatment with proinflammatory mediator tumor necrosis factor alpha (TNF-alpha, EC50 1.3221 x 10(-10)g/L). Results: Fluorescent imaging of Fura-2 loaded human SW982 synoviocytes reveals immediate and delayed cytosolic calcium oscillations elicited by ( 1) TRPV1 agonists capsaicin and resiniferatoxin (20-40% of cells), ( 2) moderate and noxious temperature change, and ( 3) osmotic stress TRPV4 activation (11.5% of cells). TNF-alpha pre-treatment ( 1 ng/ml, 8-16 hr) significantly increases (doubles) capsaicin responsive cell numbers and [Ca2+]i spike frequency, as well as enhances average amplitude of temperature induced [Ca2+](i) responses. With TNF-alpha pre-treatment for 8, 12, and 16 hr, activation with 36 or 45 degree bath solution induces bimodal [Ca2+](i) increase (temperature controlled chamber). Initial temperature induced rapid transient spikes and subsequent slower rise reflect TRPV1 and TRPV4 channel activation, respectively. Only after prolonged TNF-alpha exposure ( 12 and 16 hr) is recruitment of synoviocytes observed with sensitized TRPV4 responses to hypoosmolarity (3-4 fold increase). TNF-alpha increases TRPV1 (8 hr peak) and TRPV4 (12 hr peak) immunostaining, mRNA and protein expression, with a TRPV1 shift to membrane fractions. Conclusion: TNF-alpha provides differentially enhanced synoviocyte TRPV1 and TRPV4 expression and [Ca2+](i) response dependent on the TRP stimulus and time after exposure. Augmented relevance of TRPV1 and TRPV4 as inflammatory conditions persist would provide calcium mediated cell signaling required for pathophysiological responses of synoviocytes in inflammatory pain states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available