4.7 Review

Protein modification by acrolein: Relevance to pathological conditions and inhibition by aldehyde sequestering agents

Journal

MOLECULAR NUTRITION & FOOD RESEARCH
Volume 55, Issue 9, Pages 1301-1319

Publisher

WILEY
DOI: 10.1002/mnfr.201100182

Keywords

Acrolein; Aldehyde-sequestering agents; Neurodegenerative diseases; Protein adducts; Reactive carbonyl species

Ask authors/readers for more resources

Acrolein (ACR) is a toxic and highly reactive alpha,beta-unsaturated aldehyde widely distributed in the environment as a common pollutant and generated endogenously mainly by lipoxidation reactions. Its biological effects are due to its ability to react with the nucleophilic sites of proteins, to form covalently modified biomolecules which are thought to be involved as pathogenic factors in the onset and progression of many pathological conditions such as cardiovascular and neurodegenerative diseases. Functional impairment of structural proteins and enzymes by covalent modification (crosslinking) and triggering of key cell signalling systems are now well-recognized signs of cell and tissue damage induced by reactive carbonyl species (RCS). In this review, we mainly focus on the in vitro and in vivo evidence demonstrating the ability of ACR to covalently modify protein structures, in order to gain a deeper insight into the dysregulation of cellular and metabolic pathways caused by such modifications. In addition, by considering RCS and RCS-modified proteins as drug targets, this survey will provide an overview on the newly developed molecules specifically tested for direct or indirect ACR scavenging, and the more significant studies performed in the last years attesting the efficacy of compounds already recognized as promising aldehyde-sequestering agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available