4.6 Article

Guanosine Protects Against Cortical Focal Ischemia. Involvement of Inflammatory Response

Journal

MOLECULAR NEUROBIOLOGY
Volume 52, Issue 3, Pages 1791-1803

Publisher

SPRINGER
DOI: 10.1007/s12035-014-8978-0

Keywords

Neuroprotection; Neuroinflammation; Microglia; Cytokines; Cerebral ischemia; Guanosine

Categories

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  3. Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS)
  4. Financiadora de Estudos e Projetos (FINEP) [IBN.Net 01.06.0842-00]
  5. Instituto Nacional de Ciencia e Tecnologia para Excitotoxicidade e Neuroprotecao (INCTEN)

Ask authors/readers for more resources

Stroke is the major cause of death and the most frequent cause of disability in the adult population worldwide. Guanosine plays an important neuroprotective role in several cerebral ischemic models and is involved in the modulation of oxidative responses and glutamatergic parameters. Because the excessive reactive oxygen species produced during an ischemic event can trigger an inflammatory response, the purpose of this study was to evaluate the hypothesis that guanosine is neuroprotective against focal cerebral ischemia, inhibits microglia/macrophages activation, and mediates an inflammatory response ameliorating the neural damage. Permanent focal cerebral ischemia was induced in adult rats, and guanosine was administered immediately, 1, 3, and 6 h after surgery. Twenty-four hours after ischemia, the asymmetry scores were evaluated by the cylinder test; neuronal damage was evaluated by Fluoro-Jade C (FJC) staining and propidium iodide (PI) incorporation; microglia and immune cells were evaluated by anti-Iba-1 antibody; and inflammatory parameters such as interleukins (IL): IL-1, IL-6, IL-10; tumor necrosis factors alpha (TNF-alpha); and interferon-gamma (INF-gamma) were evaluated in the brain tissue and cerebrospinal fluid. The ischemic event increased the levels of Iba-1-positive cells and pro-inflammatory cytokines and decreased IL-10 levels (an anti-inflammatory cytokine) in the lesion periphery. The guanosine treatment attenuated the changes in these inflammatory parameters and also reduced the infarct volume, PI incorporation, and number of FJC-positive cells, improving the functional recovery. Thus, guanosine may have been a promising therapeutic agent for the treatment of ischemic brain injury by reduction of inflammatory process triggered in an ischemic event.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available