4.6 Article

Natural Inhibitors of Poly(ADP-ribose) Polymerase-1

Journal

MOLECULAR NEUROBIOLOGY
Volume 46, Issue 1, Pages 55-63

Publisher

SPRINGER
DOI: 10.1007/s12035-012-8257-x

Keywords

Poly(ADP-ribose) polymerase; PARP; PARS; Endogenous inhibitor; Naturally occurring inhibitor; Mode of action

Categories

Funding

  1. Mossakowski Medical Research Centre of the Polish Academy of Sciences
  2. Japan Society for the Promotion of Science

Ask authors/readers for more resources

Poly(ADP-ribose) polymerases (PARPs) are enzymes that catalyze the transfer of ADP-ribose units from beta-nicotinamide adenine dinucleotide (NAD(+)) to acceptor proteins. PARP-1 is responsible for more than 90 % of protein poly-ADP-ribosylation in the brain and may play a role as a molecular switch for cell survival and death. The functional roles of PARP-1 are largely mediated by its activation after binding to damaged DNA. Upon binding, PARP-1 activity increases rapidly and cleaves NAD(+) into ADP-ribose and nicotinamide. Increased activity of PARP-1 can promote DNA repair and its interaction with several transcription factors, whereas hyperactivation of PARP-1 can result in poly(ADP-ribose) accumulation and depletion of NAD(+) and ATP which may lead to caspase independent apoptotic or necrotic cell death, respectively. Excessive PARP-1 activity has been implicated in the pathogenesis of numerous clinical conditions such as stroke, myocardial infarction, inflammation, diabetes, and neurodegenerative disorders. Therefore, it is not surprising that the search for PARP-1 inhibitors with specific therapeutic uses (e.g., brain ischemia, cancer) has been an active area of research. Beyond medicinal uses, naturally occurring PARP-1 inhibitors may also offer a unique preventative means at attenuating chronic inflammatory diseases through dietary supplementation. This possibility has prompted research for specific, naturally occurring inhibitors of PARP-1. Though fewer investigations focus on identifying endogenous inhibitors/modulators of PARP-1 activity in vivo, these activities are very important for better understanding the complex regulation of this enzyme and the potential long-term benefits of supplementation with PARP-1 inhibitors. With this in mind, the focus of this article will be on providing a state-of-the-science review on endogenous and naturally occurring compounds that inhibit PARP-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available