4.5 Article

Co-evolution of specific amino acid in sigma 1.2 region and nucleotide base in the discriminator to act as sensors of small molecule effectors of transcription initiation in mycobacteria

Journal

MOLECULAR MICROBIOLOGY
Volume 90, Issue 3, Pages 569-583

Publisher

WILEY
DOI: 10.1111/mmi.12384

Keywords

-

Funding

  1. Department of Biotechnology, Government of India
  2. University Grant Commission, Government of India

Ask authors/readers for more resources

The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate [(p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available