4.5 Article

A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations

Journal

MOLECULAR MICROBIOLOGY
Volume 91, Issue 2, Pages 275-299

Publisher

WILEY
DOI: 10.1111/mmi.12459

Keywords

-

Funding

  1. NIH
  2. Energy Biosciences Institute
  3. Humboldt-Foundation (GER)

Ask authors/readers for more resources

Filamentous fungi are powerful producers of hydrolytic enzymes for the deconstruction of plant cell wall polysaccharides. However, the central question of how these sugars are perceived in the context of the complex cell wall matrix remains largely elusive. To address this question in a systematic fashion we performed an extensive comparative systems analysis of how the model filamentous fungus Neurospora crassa responds to the three main cell wall polysaccharides: pectin, hemicellulose and cellulose. We found the pectic response to be largely independent of the cellulolytic one with some overlap to hemicellulose, and in its extent surprisingly high, suggesting advantages for the fungus beyond being a mere carbon source. Our approach furthermore allowed us to identify carbon source-specific adaptations, such as the induction of the unfolded protein response on cellulose, and a commonly induced set of 29 genes likely involved in carbon scouting. Moreover, by hierarchical clustering we generated a coexpression matrix useful for the discovery of new components involved in polysaccharide utilization. This is exemplified by the identification of lat-1, which we demonstrate to encode for the physiologically relevant arabinose transporter in Neurospora. The analyses presented here are an important step towards understanding fungal degradation processes of complex biomass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available